INSTRUCTIONS

StarFlow PV™ is a microhybrid, light cured, low viscosity composite, intended for bonding indirect veneers to tooth structure.

1. Before trying in the veneer, apply silane to the uncontaminated, hydrofluoric acid etched veneer. Next, coat the silanated veneer with an unfilled, light cured, “enamel-bonding” resin. The silane is now “locked in” by the unfilled resin and is permanently attached, unless dissolved in strong solvents such as alcohol or acetone.

2. Try-in the resin coated porcelain veneers. The unfilled resin protects the silane from contamination. After try in, just brush off the resin with a dry brush, if contaminated, and brush on fresh resin. (If desired, ultrasonically clean the veneer in ethyl alcohol and begin again with the silane step.)

3. Choose the desired shade of StarFlow PV and place on inside of veneer to check shade on unetched tooth. A good starting shade is StarFlow PV Translucent. It is acceptable about 90% of the time. If the color needs to be modified due to show-through of the tooth and a more opaque, lighter shade is desired, try StarFlow PV Light. It works in most cases where the try-in is slightly dark. Vita shades of StarFlow and the Extra Light StarFlowPV are sometimes better choices. The StarFlowPV White Opaquer is very handy as a blender when whiteness and opacity are desired.

4. When color is satisfactory, add additional StarFlow as necessary (to replace what is left on the tooth) and place veneer in a dark area to prevent polymerization. If the StarFlowPV seems contaminated, remove with a dry brush and replace. Avoid cross-contamination between patients by replacing tip and avoid resin suck-back. Handpiece barrier sleeves may provide greater prevention of cross-contamination. Insert StarFlow PV syringe with tip into barrier sleeve, piercing only the tip through the plastic.

5. Isolate, when necessary, with retraction cord, immersed in Visine if necessary for hemostasis.

6. Clean try-in resin off the enamel surfaces, using pumice in a rubber cup. Avoid gingival contact to prevent bleeding.

7. Isolate teeth to be veneered with interproximal strips to protect adjacent teeth (not being veneered) from the etchant and bonding agent.
8. Etch tooth with an etchant. Wash and follow the adhesive manufacturer's instructions for a wet or dry field.

9. Place a thin coat of the chosen adhesive on the etched tooth. Note that the unfilled resin is not cured yet.

10. Remove matrix strips prior to placing veneers on teeth. This step assures complete and passive seating of the veneers, even in multiples.

11. Gently place the veneers on the tooth, preferably all at the same time, and tack in center (around 5 seconds) with a small curing light perpendicular to facial surface, avoiding the margins. (A 3 mm diameter tip is ideal.) After tack has fully cured, cure the other margins for about 1-2 seconds. Remove the resulting "jello" using a curette with burnishing motion. Slide a metal matrix band (ordinary Tofflemire#1 is fine) mesial and distal of one tooth at a time and light cure. Note that the metal bands should be placed at the mesial and distal contact of only one tooth at a time, preventing compression difficulty due to additive thickness of more than two bands at a time.

12. Cure the entire veneer fully with the matrix bands in place. Remove bands and move to another tooth, repeating procedure.

13. Finish and polish margins in the usual manner.

STORAGE
Best if stored below 75°F (24°C)

ADDITIONAL NOTES
- Note that all light curing luting agents require a translucent restoration. Increases in opacity require longer curing times or use of a dual cure luting agent.
- Do not store the composite material in proximity of eugenol-containing products, nor let the composite come into contact with materials containing eugenol. Eugenol can impair the hardening of the composite and cause discoloration.
- Contact of resin pastes with skin should be avoided, especially by anyone having known resin allergies.
ACCOLADE & STARFLOW MATERIAL SAFETY DATA SHEET

SECTION VI – HEALTH HAZARDS
OSHA Permissible Exposure Limits: None
Other Exposure Limit Used: None
ACGIH Threshold Exposure Limit: None
Chronic, Other: None
Acute Overexposure: Irritation to eyes and skin may occur with uncured resins. May cause skin sensitivity in select individuals.
Medical Conditions generally aggravated by exposure: None known
Hygienic Practices: None
Primary Route(s) of Exposure: Skin: Yes. Inhalation and ingestion: No

SECTION VII – EMERGENCY AND FIRST AID PROCEDURES
Signs of Exposure: Severe skin or eye irritation, redness or burning sensation.
Skin: Wash off affected area with soap and water.
Ingestion: Seek immediate medical advice, carry container with label.
Eyes: Rinse immediately with plenty of water and seek medical advice.

SECTION VIII – SAFE HANDLING & USE PRECAUTIONS
Spill Management: Use absorbent to collect the material. Wash contaminated surfaces with soap and water.
Waste Disposal Methods: This material contains hazardous constituents. Dispose of safely in accordance with local, state, and federal regulations. Avoid temperatures in excess of 40 deg. C.

SECTION IX – PROTECTION INFORMATION/CONTROL MEASURES
Respiratory: None
Eye Protection: Safety goggles
Gloves: Surgical rubber/PVC gloves
Other Clothing & Equipment: Face Mask
Ventilation: None required, local exhaust recommended.

DANVILLE FLOWABLE COMPOSITE

Accolade and StarFlow are light-cure flowable composites differing mostly in thixotropy. StarFlow is highly flowable, more often used as a first increment for “wetting” cavity preparations and for pit and fissure sealing applications. Accolade is highly thixotropic, demonstrating resistance to slumping. It can be used when resistance to gravitational forces is desired. Differences in handling properties determine the preference of material. Accolade SRO provides maximum radiopacity. It is ideal as a first increment where good x-ray visibility is required.

Accolade and StarFlow are suitable for class III, IV, and V fillings. The lack of clinical wear studies precludes Danville from recommending any flowable for occlusal surfaces of Class I and II fillings.

Accolade and StarFlow are classified as radiopaque microhybrids, having average filler size of 0.7 microns. The filler content in StarFlow is 61% and in Accolade 65% by weight. Danville is not aware of any incompatibilities with other composites. Accolade and StarFlow have long-term fluoride release and have compressive strengths comparable to many conventionally filled, packable hybrids. Both are available in most Vita shades.

Related products, Accolade PV and StarFlow PV, are intended mainly for porcelain veneers. They differ only in shades from the non-PV products.

INSTRUCTIONS FOR USES OF ACCOLADE AND STARFLOW IN TYPICAL APPLICATIONS.
1. Isolate tooth with a rubber dam or use Danville’s Dam Cool light-cured dental dam.
2. Complete conservative cavity preparation with conventional means or with an air abrasive device such as Danville’s PrepStart™.
3. Use of Danville’s Caries Finder™ is suggested to ensure complete removal of caries.
4. Apply bonding agent such as Danville’s Prelude per manufacturer’s instructions.
5. Place sectional matrix such as Danville’s Contact Matrix to obtain natural interproximal contour, where needed.

6. Discard composite syringe cap. Twist to lock on a new needle tip; for Accolade use an 18-gauge tip and for StarFlow use a 20-gauge tip. Push out air and fill tip with composite material with syringe held in a vertical position to avoid bubble entrapment. (Spent tip serves as a cap between uses. Avoid cross-contamination between patients by replacing needle tip and avoid resin suck-back. Handpiece barrier plastic sleeves may provide greater prevention of cross-contamination. Insert syringe with new needle tip into barrier sleeve, piercing only the needle tip through the plastic.)

7. Syringe composite into cavity preparation in 2mm maximum increments. Successive layers will directly adhere as long as the oxygen inhibited outer surface is undisturbed. Otherwise apply a bonding agent between layers.

8. Light-cure each composite increment for 30 seconds with a halogen curing light (assuming a light output of 600 mW/cm²). Other light sources or intensities require an adjustment to the cure time. See curing light manufacturer’s instructions.

9. Class I and II composites are generally layered with a highly filled posterior composite after the flowable composite is cured. Other cavity preparations are often filled without the use of another layered composite.

10. Finish composite with fine diamonds or finishing burs. Polish to a high gloss with discs or composite polishing tools such as Danville’s SpinBright. Interproximal finishing is accomplished with fine grit finishing strips.

STORAGE
Best if stored below 750 F (240 C)

ADDITIONAL NOTES
* Do not store composite material in proximity of eugenol-containing products, nor let the composite come into contact with materials containing eugenol. Eugenol can impair the polymerization of the composite and cause discoloration.
* Contact of resin-based composites with skin should be avoided, especially by anyone having known resin allergies.

ACCOLADE & STARFLOW INSTRUCTIONS

ACCOLADE & STARFLOW MATERIAL SAFETY DATA SHEET

SECTION I – PRODUCT IDENTIFICATION
Company Name: Danville Materials
3420 Fostoria Way Ste. A-200
San Ramon, CA 94583
Phone: (800) 827-7940
Fax: (925) 973-0764
Prepared: October 11, 2006

OSHA PEL

ACGIH TLV

5
ND
ND

10
ND
ND

SECTION II – HAZARDOUS INGREDIENTS OF MIXTURES
Hazardous Component
Barium Glass
BIS GMA
Amorphous Silica
OSHA PEL
15
ND
ND

ACGIH TLV
10
ND
ND

SECTION III – PHYSICAL DATA
Vapor Pressure mm HG: ND
Evaporation Rate (Ether = 1): NA
Solubility in H20: Insoluble
Appearance: Tooth-Shaded Resin Paste
Specific Gravity (H2 = 1): > 1
Vapor Density (Air = 1): NA
% Volatile by volume: NA
Boiling Point: ND
Odor: Slight

SECTION IV – FIRE AND EXPLOSION
Flash Point: > + 104 deg. F
Extinguishing Media: Carbon Dioxide, foam, dry chemical
Special Fire-Fighting Procedures: None
Flammable Limits: ND
Unusual Fire and Explosion Hazards: None

SECTION V – REACTIVITY DATA
Stability: Unstable () Stable (X)
Conditions to avoid: Prolonged extreme heat beyond 40 deg. C, and intense light.
Incompatibility: ND
Hazardous Decomposition Products: None known
Hazardous Polymerization: May occur () Will not occur (X) None